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ABSTRACT
Introduction: Bloodstream infections (BSIs) caused by Staphylococcus aureus are common worldwide, 
representing one of the most relevant issues in clinical infectious diseases practice. In particular, BSIs by 
methicillin-resistant S. aureus (MRSA-BSI) are still today a challenge since mortality burden remains 
elevated although decades of research.
Areas covered: The following topics regarding MRSA-BSI were reviewed and discussed by resorting to 
best available evidence retrieved from PubMed/MEDLINE up to October 2024: i) epidemiology; ii) 
microbiology; iii) classification, with a focus on complicated and not complicated forms; iv) the 
structured approach to the patient; v) pharmacokinetics and pharmacodynamics of the main antimi
crobial options; vi) controversies regarding the best therapeutic approach.
Expert opinion: Despite ongoing efforts to better stratify and manage MRSA-BSI, there is no universally 
accepted classification system accurately distinguishing between uncomplicated/low risk and compli
cated/high risk forms. Biomarkers such as interleukin(IL)-10 hold promise in order to enable a more 
precise stratification, premise for an appropriate treatment plan. There is a theoretical rationale for 
implementing a combination therapy including a beta-lactam agent upfront, especially for patients 
considered at higher risk of unfavorable outcomes, but further data are necessary, and the same applies 
to newer adjuvants. Novel microbiological techniques may help in guiding antimicrobial duration.
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1. Introduction

Staphylococcus aureus is a significant human pathogen 
responsible for a diverse spectrum of clinical infections. It is 
a leading cause of bloodstream infection (BSI) and infective 
endocarditis (IE), as well as skin and soft tissue, osteoarticular, 
pleuropulmonary, and device-associated infections [1]. BSI 
likely represents the paradigmatic form of S. aureus infection, 
carrying a substantial burden of morbidity and mortality 
worldwide, and is rarely asymptomatic or paucisymptomatic; 
more commonly, it is associated with a vast array of manifes
tations, including hematogenous complications, IE, and spread 
to prosthetic materials [2]. Methicillin-resistant Staphylococcus 
aureus (MRSA) is currently the most significant form of phe
notypic resistance [3]. In 2024, the World Health Organization 
(WHO) revised its 2017 list of drug-resistant bacteria that pose 
the greatest threat to human health. This update aims to 
guide the development of new treatments and strategies for 
combating antimicrobial resistance. MRSA remains classified as 

a high-priority pathogen due to its significant impact on com
munity health and its increasing levels of resistance [4]. 
Consequently, it is evident that the management of methicil
lin-resistant S. aureus (MRSA-BSI) represents a critical challenge 
in contemporary medicine [5]. Along with Escherichia coli, 
S. aureus accounts for half of the cases of BSIs worldwide 
and is the most frequent cause of gram-positive bacteremia 
[6]. Recent global estimates indicate that infection-related 
deaths amount to 13.7 million (95% uncertainty interval [UI], 
10.9–17.1) annually [7]. Among pathogens, S. aureus emerges 
as the most lethal, accounting for 1,105,000 deaths (95% UI, 
816,000–1,470,000) and constituting the primary cause of fatal 
BSIs with 299,000 deaths (95% UI, 166,000–485,000), with an 
estimated all-cause age-standardized mortality rate of 14.6% 
(95% UI, 10.8%−19.4%) [7]. The prevalence of methicillin- 
resistant strains among S. aureus infections exhibits significant 
global variation; however, the consistent factor is the poorer 
prognosis of MRSA infections compared to their methicillin- 
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susceptible counterparts (MSSA), particularly in the context of 
BSI [8]. Despite decades of medical advancements since MRSA 
emerged among clinical isolates in the 1960s [9], numerous 
controversies persist regarding critical aspects such as the 
definition of complicated or uncomplicated MRSA-BSI, the 
appropriate structured approach to a patient with MRSA-BSI, 
the optimal antimicrobial selection, the management of com
plications, and the follow-up protocol.

This review aims to provide a comprehensive examination 
of MRSA-BSI, emphasizing the latest developments in antimi
crobial options, diagnostic modalities, and management stra
tegies. Particular attention is given to controversies in clinical 
practice and gaps in evidence, which continue to challenge 
healthcare providers in tailoring effective patient-centered 
care. By consolidating the current knowledge, this review 
seeks to inform and refine approaches to this formidable 
clinical entity.

2. Methodology

A panel comprising seven experts (four infectious disease 
physicians, a clinical pharmacist, a clinical microbiologist, and 
an intensivist) performed a thorough literature search on 
PubMed/MEDLINE, focusing on English-language publications 
available up to October 2024. Broad search terms, such as 
‘MRSA AND bacteremia/bacteraemia,’ were used to ensure 
extensive retrieval of relevant studies, specifically trials, meta- 
analyses, as well as systematic and narrative reviews. The 

references of selected articles were also screened and critically 
assessed. The panel reviewed and discussed the collected 
literature for each facet of the topic, in order to yield 
a consistent synthesis of the data.

3. Epidemiology

According to comprehensive estimates, in North America and 
Europe BSI incidence ranged from 113 to 204 per 100,000 
population [10]. In the majority of studies in most setting, 
S. aureus ranks second as cause of BSI, whereas Escherichia 
coli is usually the number one pathogen, often being infec
tions from urinary tract or from abdomen the source [10].

The global epidemiology of MRSA-BSI has demonstrated 
considerable variation, with some regions experiencing signif
icant declines due to improved infection control practices, 
while others continue to report high rates of infection. An 
international population-based surveillance conducted from 
2000 to 2008 assessed 83 million person-years of S. aureus- 
BSI (SAB) data [11]. The overall annual incidence rate of SAB 
was 26.1 per 100,000 population, with specific MSSA- and 
MRSA-BSI incidence rates of 24.2 and 1.9 per 100,000 popula
tion, respectively. The overall incidence of community-onset 
MSSA-BSI was 15.0 per 100,000, with similar data among 
regions. However, the authors noted that the rates of hospital- 
onset MSSA-BSI (9.2 per 100,000), community-onset MRSA BSI 
(1.0 per 100,000), and hospital-onset MRSA-BSI (0.8 per 
100,000) varied worldwide [11]. A European surveillance net
work collected a total of 573,951 routine clinical antimicrobial 
susceptibility tests from SAB (including both MRSA and MSSA); 
data were collected from 2005 to 2018 [12]. During the obser
vation period, the crude percentage of MRSA-BSI decreased 
from 6,615/27,215 (24%) to 10,130/72,085 (14%); conversely, 
MSSA-BSI increased from 20,510/27,215 (76%) to 61,955/ 
72,085 (86%) [12]. A recent meta-analysis confirmed a similar 
resistance percentage for hospital-acquired MRSA-BSI of 18% 
(95% confidence interval [CI], 5.85–34.75), indicating high het
erogeneity among studies (I2 95%) [13]. A recent population- 
based Swiss surveillance report collected data of SAB from 
2008 to 2021; data showed a + 37% increase in MSSA-BSI, 
from 17.8 to 24.4 cases per 100,000 inhabitants (p < 0.01), 
and a reduction in MRSA-BSI from 1.9 to 1.2 cases per 
100,000 inhabitants (p < 0.01) [14]. A specific setting could 
exhibit a higher percentage: an intensive care unit (ICU) epi
demiologic report in the United States revealed an increase in 
the resistance rate for S. aureus isolates from 34% to 64% from 
1992 to 2004, with a 3% increase rate per year (p < 0.01) [15].

3.1. Risk factors for MRSA-BSI

Although historically contact precautions are considered the 
cornerstone for infection control and to reduce the risk of 
infection, a recent meta-analysis demonstrated no significant 
difference in rates of hospital-associated MRSA infection 
before and after removing contact precautions (relative risk 
[RR] 0.84; 95% CI, 0.71–1.01) [16]. As elucidated previously, 
colonization rates may be elevated in patients with specific 
comorbidities, and colonization may increase the risk of infec
tion. A recent meta-analysis determined that solid organ 

Article highlights

● Bloodstream infections by methicillin-resistant Staphylococcus aureus 
(MRSA-BSIs) remain a significant cause of morbidity and mortality 
globally, accounting for over 1 million deaths annually.

● MRSA develops resistance through mechanisms like the mecA and 
mecC genes, which code for low-affinity penicillin-binding proteins. 
Resistance to beta-lactams, vancomycin, daptomycin, and linezolid 
involves various genetic mutations and adaptive bacterial strategies.

● There is no universally accepted system to classify MRSA-BSI into 
uncomplicated or complicated forms. Persistent bacteremia, espe
cially beyond 72 hours, and metastatic infections are key indicators 
of complicated MRSA-BSI.

● Effective management includes comprehensive risk stratification, 
timely diagnostics, and appropriate use of follow-up blood cultures 
and imaging, also including advanced techniques of nuclear medicine 
to detect metastatic foci.

● Vancomycin remains the first-line treatment, though its limitations 
include nephrotoxicity and suboptimal efficacy. Daptomycin and 
fifth-generation cephalosporins like ceftobiprole are viable 
alternatives.

● Combination therapies have not demonstrated clear superiority over 
monotherapy in randomized clinical trials.

● Further research is needed to determine the role of combination 
regimens, especially as salvage therapy for persistent infections.

● Standard therapy duration ranges from 14 to 42 days, depending on 
whether the infection is classified as uncomplicated or complicated.

● Oral step-down therapy and the use of long-acting antimicrobials 
may reduce hospitalization time but require further validation. Long- 
acting lipoglycopeptides such as dalbavancin and oritavancin show 
potential for outpatient therapy.

● The need for personalized medicine approaches, including biomar
ker-based risk stratification and antimicrobial duration guidance, is 
emphasized. Interleukin(IL)-10 seems a promising biomarker for pre
dicting complicated MRSA-BSI.
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transplant patients colonized by MRSA exhibited a higher risk 
of infection (odds ratio [OR] 6.81; 95% CI, 3.68–12.61) and, 
specifically, a higher risk of BSI (OR 2.80; 95% CI, 0.82–9.62) 
compared to non-colonized patients [17]. The risk of infection 
in colonized patients could be elucidated by a recent study 
suggesting that S. aureus can cause infections via a ‘Trojan 
Horse’ mechanism, wherein neutrophils engulf intestinal MRSA 
and subsequently travel through the bloodstream [18]. 
A monocentric observational study identified central venous 
catheter placement as an independent risk factor for SAB (OR 
80.7; 95% CI, 2.2–3,014.1), while prior hospital stays >3 days 
(OR 4.1; 95% CI, 1.5–5.7) and chronic kidney disease (OR 3.0; 
95% CI, 1.01–9.2) were uniquely associated with MSSA [19]. In 
a single-center observational retrospective study from Italy, 
evaluating patients admitted to the emergency department 
for multidrug-resistant organism BSI, the authors identified the 
following risk factors for MRSA-BSI: dialysis (OR 12.3; 95% CI 
1.8–83), antibiotic therapy and/or hospital admission in the 
past 90-days (OR 3.6; 95% CI 1.2–10.6), and ureteral stent or 
nephrostomy (OR 7.8; 95% CI 1.5–40.9) [20]. In a Belgian study 
risk factors associated with MRSA-BSI included not residing at 
home (p = 0.001), prior antibiotic exposure (p = 0.002), insulin- 
requiring diabetes (p = 0.028), and nosocomial BSI (p = 0.031) 
[21]. In cancer patients, risk factors were healthcare-associated 
pneumonia (OR 3.02; 95% CI 1.63–5.59), hospital-acquired 
infection (OR 5.54; 95% CI 3.27–9.38), and diabetes mellitus if 
glycemia >140 mg/dL HR 2.58 (95% CI, 1.43–4.67) [22], or 
nasogastric tube (OR 5.11; 95% CI, 1.36–19.14) and ICU admis
sion (OR 4.70; 95% CI 1.61–13.73) [23].

An observational case–control study conducted at a single 
center, spanning over a decade, examined 50 patients with 
MRSA-BSI and 98 with MSSA-BSI [24]. The research team 
noted a significant quadrupling in MRSA-BSI cases upon 
hospital admission between 1991 and 2003 (p < 0.001) [24]. 
Bivariable analysis comparing MRSA- and MSSA-BSI patients 
showed a significant association between methicillin- 
resistance and being over 60 years old, being female, having 
a history of MRSA isolation, and healthcare-associated BSI. 
Multiple-variable analyses identified previous MRSA isolation 
(OR 41; 95% CI 4–350) and admission from long-term care 
facilities (OR 37; 95% CI 4.5–316) as standalone risk factors for 
MRSA-BSI. The study found no disparities in underlying con
ditions such as diabetes, hemodialysis, immunosuppression, 
infection source, or mortality rates between the two 
groups [24].

3.2. Mortality burden of MRSA-BSI

Although MSSA-BSIs are typically more susceptible to a broad 
range of antibiotics, they are not necessarily less severe. 
Several data highlight the not negligible mortality in MSSA- 
BSI, primarily due to the Panton-Valentine leucocidin (PVL) 
cytotoxin, which is estimated to affect approximately 1.5% of 
S. aureus strains (both MSSA and MRSA), or due to enhanced 
virulence of some clonal complexes [25]. Among patients with 
human immunodeficiency virus infection, the hazard ratio (HR) 
for mortality was 2.61 (95% CI 1.95–3.49, p < 0.001), with simi
lar 30-day mortality rates between MSSA- and MRSA-BSI 
(31.7% each) [26].

Nevertheless, a gradient in mortality between MSSA- and 
MRSA-BSI exists, which implies a worse prognosis for the 
latter.

A recent meta-analysis, encompassing 536,791 patients 
with MSSA- and MRSA-BSI from 341 studies published 
between 1991 and 2021, demonstrated that SAB mortality 
decreased over the last three decades [27]. The overall in- 
hospital mortality (including both MSSA- and MRSA-BSI) 
decreased from 30.4% (95% CI, 26.6%–34.4%) prior to 2001 
to 18.0% (95% CI, 14.9%–21.5%) after 2011. Specifically, in- 
hospital mortality due to MSSA ranged from 18.8% (95% CI, 
16.3%–21.6%) to 14.3% (95% CI, 9.5%–21.1%). Similarly, in- 
hospital mortality due to MRSA ranged from 40.2% (95% CI, 
35.2%–45.5%) prior to 2001 to 28.8% (95% CI, 22.5%–36.1%) 
after 2011. At any rate, the comparison of in-hospital mortality 
between MRSA and MSSA-BSI revealed an OR of 1.92 (95% CI, 
1.71–2.16), which remained stable throughout the 30-year 
observational period: in a few words, MRSA-BSI entails a two- 
fold risk of death compared with MSSA-BSI [27].

4. Microbiology

4.1. Common and less common resistance mechanisms 
to beta-lactams

As a matter of common knowledge, S. aureus can develop 
resistance to all types of clinically used antibiotics through 
chromosomal gene mutations or by acquiring resistance 
determinants via horizontal transfer [9]. Nearly 80% of 
S. aureus strains have developed penicillin resistance by 
obtaining the beta-lactamase encoded by the blaZ gene 
(Ambler classification class A) [28]. MRSA is characterized by 
the mecA and mecC genes, which encode alternative penicil
lin-binding proteins (PBP2a and 2c, respectively) with reduced 
affinity for beta-lactams. These proteins confer high-level resis
tance to oxacillin and other beta-lactam antibiotics, excluding 
anti-MRSA fifth-generation cephalosporins such as ceftaroline 
and ceftobiprole. In certain instances, elevated resistance 
levels have been linked to increased PBP2a expression result
ing from mecA gene duplication or enhanced transcription 
[29]. The mecA or mecC genes are located on a mobile and 
transposable genetic element known as the staphylococcal 
chromosomal cassette mec (SCCmec), which can be trans
ferred horizontally between strains [9]. Recent reports have 
identified MRSA strains with decreased susceptibility to cef
taroline [30].

Alternative phenotypes can confer low-level resistance to 
oxacillin. Borderline oxacillin-resistant S. aureus (BORSA) strains 
are negative for the production of mecA or mecC determinants 
but show low levels of resistance to oxacillin, generally with a 
minimum inhibitory concentration (MIC) value near 2 mg/L 
(i.e. 1 to 8 mg/mL). These strains are commonly susceptible 
to other beta-lactams (except penicillin) [31]. The precise 
mechanism behind BORSA is unclear; however, these isolates 
often contain blaZ, resulting in hyperproduction of beta- 
lactamase. No specific diagnostic tests are available for labora
tory detection of BORSA. Cefoxitin screening is commonly 
negative, but in some cases, it can be positive in the absence 
of mecA or mecC determinants [31]. BORSA strains are 
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commonly susceptible to beta-lactam/beta-lactam inhibitor 
combinations (i.e. piperacillin/tazobactam, amoxicillin/clavula
nic acid, ampicillin/sulbactam) due to inhibition of the beta- 
lactamase encoded by blaZ [32]. Another mec-independent 
oxacillin-resistant phenotype is represented by a modified 
S. aureus (MODSA) phenotype, in which mutations in non- 
mec-type genes (e.g. pbp, gdpP, and yibH) result in increased 
oxacillin MICs. This phenotype is very rare and can be selected 
by means of beta-lactam pressure [33].

4.2. Resistance mechanisms to drugs other than 
beta-lactams: the case of vancomycin

Vancomycin is a glycopeptide antibiotic that remains 
a mainstay for the treatment of MRSA-BSI. Vancomycin- 
resistant S. aureus (VRSA), vancomycin-intermediate S. aureus 
(VISA), and heterogeneous vancomycin-intermediate S. aureus 
(hVISA) phenotypes show resistance to vancomycin: global 
prevalence of 1.5%, 1.7%, and 4.6%, respectively [34].

VRSA strains commonly show vancomycin MIC values ≥16  
mg/L. Actually, S. aureus exhibits multiple mechanisms of 
vancomycin resistance, with the primary one involving 
reduced permeability and enhanced cell wall thickness, result
ing in diminished availability of vancomycin to reach intracel
lular targets. An additional form of resistance stems from 
plasmid-mediated vancomycin resistance genes, predomi
nantly vanA, which may have been acquired from enterococci 
[35].

VISA strains typically display vancomycin MIC values ran
ging from 4 to 8 mg/L. The principal mechanisms underlying 
reduced vancomycin susceptibility in VISA strains include 
mutations in genes associated with cell wall formation (lead
ing to thicker cell walls with more peptidoglycan layers) and/ 
or alterations in the ribosomal gene rpoB [36]. In contrast, 
hVISA strains exhibit MICs within the susceptible range 
(≤2 μg/mL), but contain a subpopulation that expresses 
a resistant phenotype (MIC values exceeding 8 mg/L) [37].

Vancomycin, a glycopeptide antibiotic, continues to be 
a crucial treatment for MRSA-BSI. However, certain S. aureus 
phenotypes exhibit resistance to vancomycin: heterogeneous 
vancomycin-intermediate S. aureus (hVISA), vancomycin- 
intermediate S. aureus (VISA), and vancomycin-resistant 
S. aureus (VRSA), with global prevalence rates of 4.6%, 1.7%, 
and 1.5%, respectively [34]. VRSA strains typically display van
comycin MIC values of 16 mg/L or higher. Several mechanisms 
contribute to vancomycin resistance in S. aureus, with the 
primary one being reduced permeability and cell wall thicken
ing, resulting in decreased vancomycin access to intracellular 
targets [35]. An alternative form of resistance stems from 
plasmid-mediated vancomycin resistance genes, predomi
nantly vanA, which may have been acquired from enterococ
cal species [35]. VISA strains generally show vancomycin MIC 
values ranging from 4 to 8 mg/L. The primary mechanisms for 
reduced vancomycin susceptibility in VISA strains involve 
mutations in cell wall-associated genes, leading to thicker 
cell walls with more peptidoglycan layers, and/or mutations 
in the ribosomal gene rpoB [36]. In contrast, hVISA strains 
exhibit MICs within the susceptible range (≤2 μg/mL) but 

contain a subpopulation expressing a resistant phenotype 
with MIC values exceeding 8 mg/L [37].

4.3. Resistance mechanisms to drugs other than 
beta-lactams: daptomycin and linezolid

Streptomyces roseosporus produces daptomycin, a cyclic lipo
peptide that serves as a crucial non-beta-lactam alternative to 
vancomycin for treating MRSA infections. In the presence of 
calcium ions at physiological levels (50 μg/ml), daptomycin 
attaches to the bacterial cell membrane, causing depolariza
tion through potassium ion efflux from the cytoplasm [38]. 
This process disrupts cellular membrane function and home
ostasis, impeding essential bacterial processes. Daptomycin 
resistance in S. aureus is uncommon [38]. Several factors may 
contribute to daptomycin non-susceptibility: 1) enhanced 
positive surface charge of the bacterial membrane due to 
increased outer layer phospholipids; 2) changes in membrane 
fluidity resulting from alterations in fatty acid composition; 3) 
elevated carotenoid pigment levels; and 4) increased teichoic 
acid production in the cell wall. Previous studies have docu
mented combinations of these factors [39]. Mutations in genes 
involved in phospholipids metabolism and cell wall perme
ability are also associated to resistance to daptomycin (mprF, 
yycG, cls2, pgsA, vraS) [38].

Linezolid, a non-beta-lactam anti-MRSA therapeutic option, 
is a representative oxazolydinone drug. Its mechanism of 
action is based on the inhibition of bacterial protein synthesis 
by binding to bacterial ribosomes at the 50S subunit through 
interaction with the 23S ribosomal RNA, thus obstructing 
protein synthesis [40]. Resistance of S. aureus to linezolid is 
rare. Linezolid is synthetic in nature, and it was assumed that 
no resistance gene pool exists in microorganisms [41]. 
Resistance is based on mutations in 23S rRNA (G2575T, 
G2576T, G2576U, G2447T, and T2500A), cfr (chloramphenicol- 
florfenicol resistance), mutations in ribosomal proteins (L3 and 
L4), and other rare mechanisms (hypermutations, homologous 
recombination). The product of the cfr gene is 
a methyltransferase enzyme that causes methylation of the 
23S rRNA gene region known as A2503, mediating resistance 
to linezolid, chloramphenicol, and clindamycin [42].

4.4. Resistance mechanisms to drugs other than 
beta-lactams: new lipoglycopeptides

Among the new antibiotics effective against MRSA are dalba
vancin and oritavancin, which are classified as long-acting 
lipoglycopeptides. Dalbavancin functions similarly to vanco
mycin but offers enhanced potency, greater protein binding, 
and a significantly longer elimination half-life, up to 60 times 
that of vancomycin [43]. Nevertheless, VISA and hVISA strains 
may exhibit reduced susceptibility to dalbavancin [44]. In 
certain instances, resistance to dalbavancin was accompanied 
by cross-resistance to vancomycin and daptomycin, attributed 
to similar mutations in genes involved in cell wall metabolism 
[45,46]. Oritavancin, on the other hand, works by inhibiting 
cell wall synthesis and bacterial RNA synthesis, as well as 
increasing membrane permeability. Unlike dalbavancin, orita
vancin has demonstrated antibacterial activity against vanA- 
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positive S. aureus isolates [47]. Oritavancin resistance among 
clinical isolates has not yet been detected; non-susceptible 
isolates are rare or have not yet been reported.

4.5. When genotypic and phenotypic data are not 
consistent

Discrepancies between genotypic and phenotypic laboratory 
methods for MRSA detection could be present when: 1) 
a resistance gene is detected in an S. aureus isolate that is 
phenotypically susceptible to the predicted agents affected by 
the resistance gene; and 2) a resistance gene is not detected, 
but the isolate is found to be resistant to the predicted agents 
by phenotypic testing. In S. aureus, molecular detection of 
mecA/SCCmec in association with oxacillin (and cefoxitin) phe
notypic susceptibility could be related to inactive PBP2a, non
functional SCCmec remnant, nonfunctional mecA gene, and to 
low or heterogeneous expression of mecA gene (the last two 
are susceptible to oxacillin but resistant to cefoxitin). 
Moreover, mecC-positive strains are commonly resistant to 
cefoxitin and susceptible to oxacillin in vitro. On the other 
hand, phenotypic detection of resistance to oxacillin, in the 
absence of the mecA gene, could be related to the presence of 
BORSA or MODSA phenotypes (resistance to oxacillin or bor
derline resistance to oxacillin, but susceptible to cefoxitin) [48]. 
Critical evaluation of both molecular and phenotypic results is 
of utmost importance for optimal treatment assessment.

5. The conundrum of MRSA-BSI classification

Clinicians have consistently endeavored to classify the severity 
of MRSA-BSI due to various diagnostic objectives (metastatic 

foci detection), therapeutic management strategies (drug 
types and treatment duration), and different outcomes. 
Precise stratification of risk factors could enhance diagnostic 
efficiency by minimizing unnecessary testing in low-risk 
patients while ensuring more comprehensive evaluations for 
those at higher risk of complications. The classical dichotomy 
between complicated and uncomplicated MRSA-BSI attempts 
to address this requirement. At present, there is no consensus 
regarding the precise definitions of ‘complicated’ and ‘uncom
plicated’ SAB (henceforth uSAB and cSAB, respectively), 
a controversy that involves also MSSA infections, although 
here only MRSA is of interest.

Many classifications exist: the most utilized considers bac
teremia clearance, metastatic localizations, prosthetic material, 
and clinical course, as stated by the 2011 version of the 
Infectious Diseases Society of America (IDSA) guidelines [49].

Typically, uSAB is characterized by an eventful clinical 
course without evidence of deep-seated or metastatic infec
tion, whereas cSAB involves more severe, potentially life- 
threatening progression [50,51].

The following factors have historically been seen to be 
crucial for distinguishing between uSAB and cSAB: i) slow 
bacteremia clearance; ii) metastatic or deep-seated infections; 
iii) implanted prosthetic material; iv) fever persistence and not 
usual clinical symptoms; v) hemodialysis-dependency; vi) 
acquisition in community rather than in hospital (Figure 1).

With regard to bacteremia clearance: in uSAB, blood cultures 
typically become negative within 48–72 h after initiating appro
priate antibiotic therapy [52]. Persistent bacteremia beyond this 
period is highly indicative of cSAB. According to Fowler et al., 
persistent bacteremia is associated with a significantly higher risk 
of complications such as IE and metastatic infections [53]. 

Figure 1. Factors hinting at complicated Staphylococcus aureus bacteremia (SAB) according to standard classification.
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Similarly, a study by Chang et al. demonstrated that persistent 
bacteremia lasting beyond 72 h is a strong predictor of adverse 
outcomes, including metastatic spread and increased mortality 
[54]. At any rate, a precise definition of persistent SAB remains 
elusive pertaining to timing: it is likely that, rather than a strict 
temporal threshold, there exists an incremental risk of worse 
outcomes associated with each additional day of positive blood 
cultures. A study encompassing 884 cases of infection (13.4% 
caused by MRSA) demonstrated that as the duration of bacter
emia increased, there was a statistically significant increase of 
metastatic complications, length of hospital stay, and 30-day 
mortality rates [55].

About metastatic or deep-seated infections: uSAB lacks 
evidence of infection dissemination to other anatomical sites, 
differently from cSAB that is often associated with such com
plications, that can be clinically silent, and so even more 
worrisome, in up to 70% of cases [53]. Foci of infection can 
include bones and joints (osteomyelitis and septic arthritis, 
respectively), lungs or pleura (pneumonia or empyema), surgi
cal wounds, skin and soft tissues (cellulitis and myositis), the 
central nervous system, the genitourinary tract, the hepato
biliary system (hepatic infection or splenic abscesses), and the 
heart (IE) [56]. Multiple sites of infection can occur within 
a single individual. In a seminal review, Holland et al. empha
sized the necessity of resorting to proper imaging techniques 
to identify these serious complications [57]. Of note, IE, likely 
the most relevant complication, occurs in around 10–20% of 
cases, but in almost half of them known predisposing risk 
factors are lacking, and typical signs (e.g. murmur, embolic 
events) may be absent [58].

With regard to implanted prosthetic material: the presence 
of prosthetic devices (e.g. heart valves and joint replacements) 
significantly increases the risk of S. aureus biofilm formation, 
which can lead to persistent infection. Kaasch et al. demon
strated that SAB in patients with prosthetic devices is asso
ciated with a higher likelihood of metastatic infections, 
particularly IE [59]. Even in the absence of visible signs of 
infection at the prosthetic site, the difficulty in eradicating 
S. aureus from biofilms renders these cases challenging to 
manage.

About fever resolution and peculiar symptoms: in uSAB, 
fever should resolve within 72 h of treatment initiation. 
However, persistent fever suggests that the infection is either 
uncontrolled or has disseminated. Fowler et al. showed that 
persistent fever is a reliable indicator of a more severe infec
tion and higher complication risk [53]. Ongoing fever despite 
appropriate therapy is frequently associated with complica
tions, such as deep-seated infections [60]. Novel or exacerbat
ing symptoms during an episode of SAB, such as back pain 
(indicative of vertebral osteomyelitis) or joint pain (suggestive 
of septic arthritis), constitute common warning signs of 
a complicated infection. As elucidated by Ringberg et al., 
metastatic complications of SAB can often present challenges 
in early detection; however, they are frequently associated 
with a severe clinical course [61]. Novel heart murmurs, 
which may indicate IE, were reported as strong predictors of 
cSAB in studies by Fowler et al. [53] and Tubiana et al. [62].

With regard to hemodialysis-dependency: not only patients 
on dialysis are at higher risk of SAB [63]], but when suffering 
from infection they show notable rates of metastatic compli
cations, persistent bacteremia, and BSI-attributable mortal
ity [64].

Eventually, about the epidemiological origin: historically, 
nosocomial cases of SAB have been considered less likely to 
lead to complications due to earlier diagnosis and easier 
identification of a primary site of portal entry with associated 
source control if necessary (e.g. central line removal) [65]. 
However, when determining whether a case of SAB is compli
cated or not, these aspects inherent to nosocomial acquisition 
must be balanced against the potential elevated morbidity 
burden of a hospitalized patient [65].

The classic classification tends to skew the clinical determi
nation of cSAB, as patients at higher risk but without cSAB 
would be treated as complicated forms. Furthermore, this 
classification may lack precision because it does not focus on 
the definitive diagnosis (endocarditis, osteomyelitis, catheter- 
related infection), but rather solely on the SAB characteristics. 
The uncomplicated/complicated dichotomy (Table 1), while 
having significant treatment implications (particularly for dura
tion of treatment), inadequately captures the heterogeneity of 

Table 1. Characteristics of complicated and uncomplicated Staphylococcus aureus bacteremia (SAB).

SAB Characteristics References

Uncomplicated The following criteria must all be met: 

● Negative blood cultures 2–4 days post-initial set
● Resolution of fever within 72 h of initiating effective therapy
● Absence of prosthetic material
● Absence of endocarditis and metastatic infection

[49]

Complicated The following are considered indicators of a complicated infection: 

● Metastatic foci: Presence of infection spread to distant sites.
● Infection beyond primary focus: Spread of infection to contiguous tissues or organs.
● Positive follow-up blood cultures: Persistent bacteremia, often associated with metastatic infection and increased mortality.
● Relapses: Recurrence of infection after initial apparent resolution.

Patient-specific factors suggesting a complicated infection include: 

● Persistent fever: Unresolved fever despite appropriate therapy.
● Presence of prosthetic material: Increased risk of persistent infection.
● Hemodialysis dependence: Compromised immune status and increased risk of complications.

[50–53]
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SAB []. A key flaw in the current definition of cSAB is the 
conflation of risk factors for metastatic infection (host charac
teristics, features of the bacteremia, and clinical course) with 
the actual presence of infectious metastasis that unequivocally 
represents a sign of complication. This can result in presump
tive treatment for cSAB based solely on risk, even in the 
absence of confirmed metastatic infection. On the other 
hand, delayed diagnosis of complications can lead to misclas
sification and subsequent undertreatment. Given these limita
tions, a more effective SAB classification system or new 
diagnostic strategies are needed to guide the diagnostic 
workup. Recently, Kouijzer et al. proposed a novel risk stratifi
cation for SAB, categorizing patients as low or high risk for 
metastatic infection based on factors such as underlying host 
conditions (e.g. prosthetic devices, use of venous catheters, 
history of injection drug use, or previous episodes of IE), 
specific characteristics of the bacteremia (including its dura
tion, time to blood culture positivity, communitarian acquisi
tion, or delay in initiating treatment), and the patient’s clinical 
course (persistent fever, unidentified infection source, or signs 
of metastatic localization) [66]. For low-risk patients, additional 
diagnostic workup may not be necessary, allowing them to 
proceed with antibiotic therapy for uSAB. In contrast, high-risk 
patients should undergo further diagnostic evaluations to 
exclude metastatic infections and ensure an accurate diagno
sis and tailored antibiotic therapy [59,67]. This in-depth 
workup would ideally reveal the extent and nature of the 
S. aureus infection (Figure 2).

The new proposed risk stratification system aims to estab
lish a diagnosis of cSAB in a stepwise manner, going beyond 
the mere equivalence of risk factors with confirmed metastatic 

infection. This novel tool requires validation, and areas of 
uncertainty persist, particularly for patients initially categor
ized as ‘undetermined risk.’ A recent Korean study demon
strated promising results regarding its application, tested in 
380 patients with MRSA-BSI, of which 6.3% were classified as 
low-risk, 7.6% as indeterminate-risk, and 86.1% as high-risk for 
metastatic infections [68]. Such outcomes occurred in 0% of 
low-risk, 6.9% of indeterminate-risk, and 19.6% of high-risk 
patients. Consequently, efforts are necessary to reduce the 
high number of cases initially classified as ‘high-risk’ or ‘inde
terminate,’ emphasizing the need for refinement and 
improved diagnostic precision [68].

6. A structured approach to evaluate patients with 
MRSA-BSI

In the light of its relevant prognostic implications [69], the 
management of SAB in general and of MRSA-BSI in particular 
necessitates a coordinated set of actions, including not only 
appropriate antimicrobial therapy but also non-antibiotic mea
sures, especially aimed at identifying complicated courses that 
require specific further interventions such as source con
trol [70].

A structured approach to patient evaluation is essential for 
timely diagnosis, appropriate treatment, and improved out
comes. This approach should incorporate a comprehensive 
history, thorough physical examination, targeted laboratory 
testing, and appropriate imaging studies (Figure 3).

A key challenge in managing SAB is identifying patients at 
high risk of metastatic infections. Studies have investigated 
baseline risk factors for metastatic infection in SAB, grouping 

Figure 2. Diagnosis of MRSA bloodstream infections (MRSA-BSI). The diagnosis of MRSA-BSI is critical for timely management and involves a combination of clinical 
evaluation, microbiological testing, and advanced imaging techniques.
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these factors into several key areas as outlined above: host 
characteristics, features characteristics of the bacteremia, clin
ical presentation, and the intensity of the inflammatory 
response as reflected by inflammatory biomarkers [52,55,71].

While effective in promoting judicious testing by limiting it 
to low-risk patients, baseline risk factor assessment alone is 
insufficient to precisely identify all patients at high risk for 
adverse outcomes. In fact, while the absence of these factors 
suggests a lower probability of metastatic complications, it 
does not exclude them. A significant proportion of patients 
lacking these risk factors can still develop metastatic infections 
[68]. Effective risk stratification can facilitate more comprehen
sive evaluation of high-risk patients, but it is not sufficient on 
its own. A combination of interventions, including repeated 
physical examinations, follow-up blood cultures (FUBCs) and 
targeted imaging, is crucial for detecting potential complica
tions, including metastatic disease (Figure 3).

The issue of FUBCs deserves special attention. Because 
identifying persistent positive blood cultures improves SAB 
management and outcomes, FUBCs after initiating therapy 
are essential [72]. Indeed, persistent positive blood cultures 
after starting effective antimicrobial therapy for SAB strongly 
predict complications (e.g. metastatic infection, endocarditis) 
and mortality [55]. Patients with positive FUBCs at or after 2 
days of therapy are considered at risk for cSAB, while those 
with positive blood cultures at or after 4 days are considered 
to have cSAB [73,74].

However, methodological biases can complicate the inter
pretation of follow-up blood culture data. Indeed, there is no 
consensus on the optimal number of blood culture sets for 
detecting persistent bacteremia [75]. Blood culture sensitivity 

is highly dependent on volume, and fluctuating positivity 
(including the ‘skip phenomenon’) can occur in SAB [76,77]. 
Furthermore, the blood volume needed for adequate sensitiv
ity during active antibiotic treatment remains not adequately 
investigated. Regarding timing, most studies empirically exam
ine FUBCs within 2–4 days of starting therapy, taking them 
every 48 h until negative [49,74]. To ensure acceptable detec
tion of persistent SAB and minimize the risk of the skip phe
nomenon, a recent study recommends collecting at least two 
blood culture sets (four bottles) on days 2 and 4 of therapy. 
Collecting fewer than two sets is strongly discouraged, as this 
could miss over 25% of persistent cases [78].

Likewise, a comprehensive instrumental assessment for 
potential complications and metastatic sites is crucial 
(Figure 4) [56]. Undetected foci of infection are linked to 
higher mortality rates in SAB. Rapid identification of metastatic 
S. aureus foci is essential for optimal diagnosis. Improving the 
detection and control of these infection sources could lead to 
better patient outcomes.

Ultrasound, computed tomography (CT), and magnetic 
resonance imaging (MRI) scans are widely used diagnostic 
tools in clinical practice. Their importance and sensitivity in 
detecting potential metastatic foci are well-established and 
exemplified in Figure 4. Of particular interest, however, are 
several innovative and combined diagnostic techniques not 
yet widely implemented, but with the potential to significantly 
enhance diagnostic capabilities in this area [].

2-[18F]fluoro-2-deoxy-d-glucose positron emission tomogra
phy with combined computed tomography ([18F]FDG-PET/CT) 
has emerged as a promising diagnostic tool due to its high 
sensitivity for extracardiac infections [79,80]. Nonrandomized 

Figure 3. Diagnostic imaging for MRSA bloodstream infections (MRSA-BSI). Imaging plays a critical role in diagnosing MRSA-BSI by identifying infection sources, 
detecting complications, and guiding interventions.
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studies indicate that [18F]FDG-PET/CT effectively identified meta
static infection foci, including those previously undetected, 
resulting in increased source control interventions, reduced 
relapse rates, and decreased mortality in high-risk SAB [79–83]. 
However, a recent study showed that after adjusting for immor
tal time bias, [18F]FDG-PET/CT was not associated with 90-day 
all-cause or infection-related mortality in patients with SAB [84].

The timing of [18F]FDG-PET/CT within the first 14 days after 
positive blood cultures can vary (early or late) depending on 
the clinical scenario, potential impact, and expected benefit: In 
early PET/CT, the suggested clinical scenario is severe clinical 
presentation and poor response to treatment, with early 
source control as the potential impact and improved survival 
as the expected benefit. In late PET/CT, the suggested scenario 
is a patient with a prosthetic device in situ or SAB with an 
unknown source. The potential impact of the diagnostic tool is 
the exclusion of focal infection, and the expected benefits are 
stopping antibiotic therapy or switching from intravenous to 
oral treatment [85].

18F-FDG-PET can also be used in combination with MRI [86]. 
18F-FDG-PET/MRI, a hybrid imaging technique, combines the 
sensitivity of PET for detecting metastatic foci with the high- 
resolution detail of MRI, showing promise for improved staging 
of SAB [86]. This emerging technology is particularly useful for 
detecting occult SAB foci, especially in the lower extremities, 
a common site of infection in patients with diabetes mellitus. 
Extending the standard imaging field (skull vertex to upper 
thighs) to include the feet allows for a comprehensive whole- 
body assessment in a single scan. This approach reduces the 
need for multiple scans and minimizes ionizing radiation expo
sure compared to 18F-FDG-PET/CT, a significant advantage for 

younger patients [86]. Furthermore, 18F-FDG-PET/MRI has 
demonstrated utility in localized bone and joint infections, offer
ing superior soft tissue information compared to 18F-FDG-PET 
/CT [87–89].

Further attention is warranted regarding the instrumental 
contribution to diagnosing infective endocarditis, given the 
severity of this potential complication. Echocardiography is 
standard practice for evaluating IE in SAB. Transthoracic echo
cardiography (TTE) is widely available, safe, inexpensive, and 
represents the standard of care for patients with SAB. 
Transesophageal echocardiography (TEE) is recommended 
with a low threshold when transthoracic echocardiography is 
negative but clinical suspicion for IE persists, particularly in 
patients with cardiac implantable electronic devices or pros
thetic heart valves [90]. Several multivariable prediction rules 
and clinical tools, including the PREDICT [91], VIRSTA [62], and 
POSITIVE [92] scores, have been proposed to risk-stratify 
patients with SAB for IE and help in determining the need 
for TEE [93]. Conversely, the combined absence of specific risk 
factors and adverse prognostic features in SAB may obviate 
the need for TEE. Overall, TEE demonstrates superior sensitivity 
compared to TTE for detecting IE in SAB, irrespective of patient 
risk factors [94]. Whenever feasible, patients with SAB should 
undergo TEE to assess evidence of IE, particularly when results 
may influence clinical management.

Finally, an additional aspect worthy of consideration in the 
structured approach to SAB is the impact of infectious dis
eases consultation (IDC), which, based on an evidence synth
esis of solely observational studies (with varying proportions 
of MRSA-BSI cases), was found to approximately halve the 
mortality risk [95]. It is probable that the IDC itself does not 

Figure 4. Proposal for a new approach for diagnosis in adults with SAB according to Kouijzer IJE et al. [89].
Note: Risk Group were defined as: 1) Low - Lack predisposing factors, negative TTE, blood cultures positive for less than 48 h, hospital-acquired infections, no persistent fever, prompt 
antibiotic initiation, and no clinical signs of metastatic infection; 2) High - predisposing factors or clinical suspicion of IE (based on TTE findings), clinical signs of metastatic infection, 
implanted prostheses, blood cultures positive for more than 48 h, delayed antibiotic initiation, persistent fever; Indeterminate - Do not meet criteria for either low or high risk. 

[18F]FDG-PET/CT = 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography with combined computed tomography; CT = computed tomography; MRI = magnetic resonance imaging; 
SAB = Staphylococcus aureus bacteremia; TEE = transesophageal echocardiography. 
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significantly improve the prognosis of SAB patients; rather, the 
role of IDC serves as a catalyst for fulfilling the bundle of 
actions (e.g. FUBCs, TEE) necessary for optimal case manage
ment [70].

7. Pharmacological features of the main 
antimicrobial options

The optimization of the available agents for the management 
of MRSA-BSI should be performed according to the ‘antimicro
bial puzzle’ concepts, considering that wide variations among 
the different alternatives exist in terms of physicochemical, 
pharmacokinetic (PK), and pharmacodynamic (PD) features 
[96]. From a PK/PD point of view, the choice of the most 
appropriate anti-MRSA agent should be taken into account 
the bactericidal activity, the penetration into deep-seated 
sites of infection in case of secondary BSI, and the existence 
of pathophysiological alterations which may affect the attain
ment of efficacy threshold concentrations or leading to over
exposure and consequent potential toxicity. Considering the 
high frequency of secondary infections, the knowledge about 
the features of antimicrobials also in sites different from the 
bloodstream is of utmost importance. A summary of physico
chemical features, optimal pharmacokinetic/pharmacody
namic (PK/PD) target, requirement for dosing adjustment, 
and implementation of therapeutic drug monitoring (TDM)- 
guided strategy for each anti-MRSA agent is reported in 
Table 2.

7.1. PK/PD features of vancomycin, daptomycin, and 
linezolid

Vancomycin is characterized by high molecular weight, low-to- 
moderate protein binding (approximatively 10–50%), very low 
lipophilicity, and limited volume of distribution (0.4–1 L/Kg) 
[97]. According to its physicochemical and PK properties, van
comycin exhibits low penetration in deep-seated infections, 
including central nervous system infections (cerebrospinal 
fluid [CSF]-to-plasma ratio of 0–18%) [98] and pneumonia 
(lower than 40% in terms of relative penetration, being abso
lute concentrations in epithelial lining fluid [ELF] inadequate 
for attaining optimal PK/PD target) [99]. It should be noted 
that bactericidal activity of vancomycin is strictly dependent 
on inoculum size in MRSA infections, being affected at higher 
inoculum [100]. From a PK/PD point of view, the area under 
time-to-concentration curve-to-minimum inhibitory concen
tration (AUC/MIC) ratio represents the best predictor for van
comycin efficacy [97]. Although several evidence suggested 
that attaining an area under the curve (AUC) to minimum 
inhibitory concentration (MIC) ratio >400 was significantly 
associated with higher eradication rate and lower mortality 
in patients affected by MRSA infections [100–104], recent 
guidelines recommended the attainment of a more aggressive 
PK/PD target (i.e. AUC/MIC ratio of 400–600) in critically ill 
patients with MRSA-BSI [105]. Administration by continuous 
infusion (CI) may be preferred over intermittent infusion for 
maximizing the attainment of optimal steady-state concentra
tions (i.e. 20–25 mg/L) and reducing the risk of nephrotoxi
city [105].

Daptomycin is characterized by high molecular weight, 
relevant protein binding (approximatively 90–95%), very low 
lipophilicity (logP = −5), and limited volume of distribution 
(approximatively 7 L) [106], resulting in a moderate penetra
tion in deep-seated infections: 70–90% in soft tissue/interstitial 
fluid [107], 117% in infected bone [108,109], good penetration 
in cardiac valve and vegetations [110]; on the other hand, 
penetration is below 1% in CSF [111,112] and there is seques
tration by lung surfactant in case of pneumonia [113]. It 
exhibits a high and rapid bactericidal effect against MRSA 
[106], thus representing an optimal choice for the manage
ment of BSI. The AUC/MIC ratio represents the best predictor 
of daptomycin efficacy, being an AUC/MIC ratio value >438 or  
>1,061 required for bacteriostatic or bactericidal effect, respec
tively [114,115]. With regard to threshold concentrations for 
daptomycin efficacy and/or toxicity, a previous subgroup ana
lysis including 108 patients receiving daptomycin 6 mg/kg/day 
for the management of BSI caused by MRSA with and/or 
without endocarditis found that a trough concentration 
(Cmin) ≥24.3 mg/L was significantly associated with an 
increased probability of a creatine phosphokinase (CPK) eleva
tion [116]. Conversely, a peak concentration (Cmax) ≥60 mg/L 
was suggested as best efficacy threshold for attaining the 
desired AUC/MIC ratio [117].

Linezolid is characterized by low molecular weight, rela
tively low protein binding (approximatively 30%), moderate 
lipophilicity, and a volume of distribution of 36–47 L [118], 
resulting in optimal penetration in several deep-seated infec
tions. Specifically, linezolid exhibits a penetration rate of 
approximatively 100% in ELF [119,120], 66–100% in CSF 
[121–125], 20.2–144% in muscle and subcutaneous/adipose 
tissue [126–128], and 51–109% in bone [129–131]. 
Considering its predominantly bacteriostatic activity against 
Gram-positive strains including MRSA, linezolid may not repre
sent the first-line alternative for the management of BSI. The 
attainment of an AUC/MIC ratio of 80–120 represents the best 
PD index of linezolid efficacy against MRSA [132,133]. With 
regard to threshold concentrations for linezolid efficacy and/or 
toxicity, several evidence reported that Cmin >2 mg/L are 
required for efficacy whereas Cmin >8 mg/L are associated 
with an increased risk of thrombocytopenia [134–136,137]. 
Although approximately only 30% of linezolid is eliminated 
by renal route, dosing adjustment is strictly required in case of 
acute kidney injury of chronic kidney disease in order to 
minimize the risk of overexposure and consequent potential 
linezolid toxicity [138].

7.2. PK/PD features of fifth-generation cephalosporins

Fifth-generation cephalosporins (i.e. ceftaroline and ceftobiprole) 
exhibit common physicochemical and PK features with other 
beta-lactams, including low molecular weight and lipophilicity, 
limited volume of distribution (36 and 21.7 L for ceftaroline and 
ceftobiprole, respectively), low protein binding (15–28% for cef
taroline and 16% for ceftobiprole), and predominant renal clear
ance [139,140], thus resulting in low-to-moderate penetration in 
deep-seated infections. Whereas good penetration was found in 
muscle (approximatively 50% and 70% for ceftaroline and cefto
biprole, respectively) and subcutaneous tissue (47%–58% for 
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ceftaroline and 49% for ceftobiprole) [141–143], poor penetra
tion rate was reported in ELF (approximatively 25%) [144,145] 
and in bone (6–22%) [146]. Although data on CSF penetration of 
fifth-generation cephalosporins are currently limited, a PK beha
vior similar to those reported for other cephalosporins was 
reported in preclinical models, being drug penetration strictly 
associated with the levels of meningeal inflammation [147,148]. 
From a PK/PD point of view, both ceftaroline and ceftobiprole 
exhibit time-dependent bactericidal activity against S. aureus, 
being their efficacy associated with the percentage of the dosing 
interval that the free concentration is maintained above the MIC 
of the targeted pathogen (%fT>MIC) [149,150]. Preclinical studies 
found that a 32.1–35%fT>MIC was associated with 2-log-kill 
activity against MRSA with ceftaroline, although a fT>MIC less 
than 50% was associated with MRSA regrowth and four-fold MIC 
increased to ceftaroline [149,151]. Similarly, a hollow-fiber model 
found that a 29.3%fT>MIC was associated with 2-log-kill activity 
against MRSA with ceftobiprole [150]. From a clinical point of 
view, the attainment of a 54.2–55-0%fT>MIC was an indepen
dent predictor of microbiological response in patients receiving 
ceftaroline for the management of acute bacterial skin and skin 
structure infections [152]. Similarly, attaining a 51.1%fT>MIC was 
independently associated with clinical cure among patients 
receiving ceftobiprole for pneumonia [153]. Overall, these find
ings may suggest the need for attaining aggressive PK/PD tar
gets with fifth-generation cephalosporins as recently reported 
for Gram-negative infections in order to suppress resistance 
emergence [154]. In this scenario, the administration by CI may 
ensure the attainment of aggressive PK/PD target with ceftaro
line and ceftobiprole [155,156].

7.3. PK/PD features of new lipoglycopeptides

Novel lipoglycopeptides (dalbavancin and oritavancin) are 
characterized by high molecular weight, long half-life (approx
imatively 10 days for dalbavancin and 14–16 days for oritavan
cin), and high protein binding (93% for dalbavancin and 85% 
for oritavancin), whereas volume of distribution was limited 
for dalbavancin (approximatively 7–9 L) and larger for orita
vancin (approximatively 1 L/Kg) [157,158]. These physicochem
ical and PK features result in good penetration of dalbavancin 
in skin (approximatively 60%) [159], lung (approximatively 
36%) [160,161], and bone (approximatively 13.1% coupled 
with the attainment of absolute bone concentrations able to 
provide optimal activity against MRSA up to MIC90) [159], 
whereas low penetration was found in peritoneal fluid 
(approximatively 5.2%) [162] and CSF [163]. Similarly, oritavan
cin exhibits a moderate penetration in skin (approximatively 
19%) [164] and bone [165], whereas penetration in CSF is less 
than 5% [166]. Both agents showed high bactericidal activity 
against MRSA [167]. A preclinical in vivo model found that the 
attainment of a fAUC/MIC ratio >111.1 ensured 2-log kill activ
ity against MRSA [168]. According to this PK/PD target, 
a recent proof-of-concept found that a total dalbavancin 
plasma concentration of 4.02 and 8.04 mg/L ensured the 
attainment of optimal PK/PD target against S. aureus isolates 
showing an MIC value equal to MIC90 or clinical breakpoint, 
respectively [169]. Conversely, no PK/PD target of efficacy 
currently exists for oritavancin against MRSA.

Therapeutic drug monitoring (TDM) may represent the best 
tool for ensuring the attainment of optimal PK/PD target with 
each anti-MRSA agent [170]. A recent international position 
paper concerning the usefulness and the adoption of a TDM- 
guided strategy in critically ill patients stated that TDM is highly 
recommended for vancomycin, beta-lactams, and linezolid [171], 
thus including most of the current available agents for treating 
MRSA-BSI. In regard to daptomycin, the expert panel neither 
recommend nor discourage the adoption of a TDM-guided strat
egy, whereas no recommendations were provided for novel 
lipoglycopeptides [171]. However, in regard to dalbavancin, sev
eral evidence recently suggested the clinical relevance of adopt
ing a TDM-guided strategy specifically in the scenario of long- 
term staphylococcal infections requiring at least 6 weeks of 
treatment [169,172–176]. The expert interpretation of TDM 
results according to ‘antimicrobial puzzle’ concepts and the 
identification of the proper timing in which performing TDM 
and subsequent reassessments represent crucial issues that 
should be carefully taken into account in the adoption of a TDM- 
guided strategy for the management of MRSA-BSI [177].

8. Treatment

The treatment of MRSA-BSI is a multifaceted and dynamic 
process, involving decisions that span antimicrobial selection, 
treatment duration, and strategies for addressing complicated 
and persistent infections. Another aspect is the possibility to 
transitioning from intravenous to oral treatment allowing 
completion of therapy after hospital discharge.

8.1. The cornerstone of antimicrobial therapy for 
MRSA-BSI

Vancomycin has long been regarded as the gold standard for 
treating significant invasive MRSA infections in general [178], and 
MRSA-BSI in particular [57]. Vancomycin remains recommended 
as the first-line treatment for MRSA-BSI in the United States [49] 
and Europe [179,180]. There have been occasional challenges to 
its place in therapy; however, the available evidence has dis
proved the notion that patients with high MIC values within 
the susceptible range (≥1.5 mg/L) will experience poorer out
comes [181,182] and that the so-called ‘MIC creep phenomenon,’ 
namely the progressive increase in vancomycin MIC values for 
S. aureus, has a negative clinical impact [183]. Vancomycin is one 
of the few drugs originating from the 1950s that remains avail
able in the pharmacological armamentarium, and its long-lasting 
use is attributed to the consistently high percentage of vanco
mycin susceptibility demonstrated by S. aureus strains over the 
years [184]. Nevertheless, its limitations are well-documented, 
encompassing toxicity (particularly renal), narrow therapeutic 
window, and, most notably, suboptimal efficacy: otherwise, the 
persistently elevated mortality associated with MRSA-BSI 
(exceeding one-fourth of cases) would be unexplained [184].

However, no randomized clinical trial (RCT) has demon
strated inferiority of vancomycin compared with other options 
for MRSA-BSI, so it remains the (imperfect) reference drug.

This appears even more striking considering that for 
decades vancomycin has been utilized in a manner incon
sistent with the most current understanding of its PK/PD 
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characteristics, as previously elucidated. The current recom
mendations advocate for an AUC-guided dosing approach 
utilizing Bayesian software, superseding the through-only 
monitoring method [105]. Anyway, it is important to note 
that this paradigm shift is not supported by RCT data and 
may require substantial resources, an investment that may 
not be feasible in all healthcare facilities [185]. From a more 
pragmatic perspective, clinicians should utilize the 
resources available to them to guide the dosing of vanco
mycin [186].

Of course, no advanced dosing methods were implemen
ted in the seminal RCT run by Fowler and colleagues 
around 20 years ago, comparing vancomycin with the bac
tericidal lipopeptide daptomycin for BSI and right-sided 
endocarditis related to S. aureus, proving non-inferiority of 
the latter [187]. Actually, MRSA infections represented less 
than half cases (38%, 89/235), analyzed separately with 
confirmation of the main results also in the specific subset 
[188]. No further RCTs have been published on this compar
ison, thus evidence syntheses have predominantly included 
observational studies [189,190]. In essence, the findings 
from Maraolo et al. [189] were more recently replicated by 
Adamu and colleagues [190]: daptomycin was associated 
with lower OR of mortality, although not in a statistically 
significant fashion, but the impact on the composite out
come ‘clinical failure’ (although variably defined across stu
dies) was relevant for MRSA-BSI when using vancomycin as 
comparator (OR 0.58; 95% 0.38–0.89 in the first meta- 
analysis; OR 0.62; 95% 0.41–0.94 in the second one). Of 
note, daptomycin appeared to be safer, definitely less asso
ciated with treatment discontinuation due to safety issues 
(OR 0.15; 95% CI 0.06–0.36) [189].

Therefore, daptomycin, that has the great advantage of 
convenient once-daily dosing, has become the main alter
native to vancomycin for MRSA-BSI [70], although contro
versies regarding its optimal utilization persist [191]. In 
addition to pharmacoeconomic considerations, given the 
cost-effectiveness of the inexpensive vancomycin, other 
concerns are the treatment-emergent resistance and the 
dosage conundrum [178]. In the registrational trial, the 
standard daily dose of 6 mg/Kg was implemented [187], 
but subsequent evidence pointed at improved efficacy at 
higher doses (8–10 mg/Kg) [192].

The latest ‘player’ sifted through a proper RCT for MRSA-BSI is 
ceftobiprole, a fifth-generation cephalosporin [193]. Ceftobiprole 
was tested against daptomycin for cSAB in a population of 390 
adult hospitalized patients, of which about 24% had MRSA-BSI, 
and proved to be non-inferior: overall treatment success was 
69.8% versus 68.7% [194]. Of note, in the MRSA subgroup clinical 
success was lower for ceftobiprole (percentage-point difference 
−8.3%; 95% CI −25.3-8.6), although not significantly considering 
the non-inferiority margin equal to −15% [194]. Another impor
tant aspect was the dosage regimen: in the majority of patients 
receiving daptomycin, the administered dose did not exceed 7  
mg/kg/day, although the protocol permitted doses up to 10 mg/ 
kg; conversely, for the initial 8 days, ceftobiprole was adminis
tered at 500 mg/kg every 6 h [194], an increased frequency 
compared to the standard regimen of 500 mg/kg every 8 h [195].

8.2. Combination or monotherapy for MRSA-BSI: the 
dilemma

The interest in combination therapy in this setting arose from the 
recognition that vancomycin was an imperfect gold standard 
and that no other monotherapy regimen demonstrated superior 
efficacy in a high-quality RCT [178]. The underlying rationale for 
combination therapy is predicated on the potential synergistic 
effects between diverse drug classes, with the aim of enhancing 
the likelihood of rapid microbiological eradication, clinical suc
cess, and ultimately, improved patient survival [196].

One of the most significant theoretical foundations about 
combination regimens is the ‘seesaw effect:’ an inverse rela
tionship between glycopeptides or daptomycin and beta- 
lactam MICs in MRSA [197]. Essentially, through mechanisms 
not yet fully elucidated (e.g. altered maturation of PBP2A), the 
susceptibility to beta-lactams increases at the expense of the 
susceptibility to the backbone [197]. Furthermore, synergy 
between daptomycin and beta-lactams has been well- 
established for a considerable period [198]. Another agent 
potentially useful in combination regimens is fosfomycin: 
a bactericidal antibiotic that inhibits an enzyme-catalyzed 
reaction (the formation of the peptidoglycan precursor UDP 
N-acetylmuramic acid) in the first step of the synthesis of the 
bacterial cell wall, showing synergism with both beta-lactams 
and daptomycin [199]. Other experts advocated the role of 
adjunctive protein synthesis inhibitor antibiotics for toxin sup
pression in severe S. aureus infections [200].

A series of RCTs has tested several combination strategies 
against different backbones, either specifically for MRSA-BSI or 
in mixed populations (both MSSA and MRSA), but clear super
iority of the combination therapy has not been demonstrated. 
In Table 3, the main features and the salient findings of these 
studies are summarized [201–207], although more granular 
analysis of them is available elsewhere [196,208].

In essence, these results are consistent with pooled avail
able evidence addressing the role of combination therapy for 
MSSA-BSI [209]. The association between a beta-lactam as 
backbone with manifold types of companion drugs did not 
impact positively on mortality, neither in older studies, such as 
a RCT from Finland featuring levofloxacin with or without 
rifampicin as third drug for deep-seated infections [210], nor 
in more recent trials testing daptomycin [211] or fosfomycin 
[212] as adjunctive therapy. A potential benefit was observed 
in reducing relapses/recurrences, although countered by 
a greater burden of adverse events [209].

The latest European guidelines on endocarditis still backed 
the adjunctive role of gentamicin for prosthetic valve infections 
from either MSSA or MSSA [213], but already available evidence 
in favor of this stance was quite low [214]. As shown in the 
systematic review by Grillo and colleagues on MSSA, for BSI 
with or without IE the addition of the aminoglycoside to the 
beta-lactam backbone did not yield a clinical benefit [209]. 
Regarding MRSA-BSI, the seminal RCT by Fowler et al. actually 
was a study comparing a combination therapy relying on 
a backbone agent plus gentamicin (at low dose for 4 days) with 
daptomycin, even though the aminoglycoside could be added in 
the latter arm when patients were diagnosed with left-sided IE, 
but de facto the proportion of adjunctive gentamicin was 0.8% in 
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the daptomycin arm and 93% in anti-staphylococcal penicillin/ 
vancomycin group [187]. Notably, in the MRSA subgroup dapto
mycin was administered always as stand-alone therapy [188]. As 
previously stated, daptomycin turned out to be non-inferior, 
another brick in the wall of evidence against the routinary use 
of combination therapy [187,188].

At any rate, what stands out from Table 3 is the remarkable 
statistical, clinical, and methodological heterogeneity of the 
RCTs published so far: different regimens, diverse dosages and 
antibiotic duration, highly variable proportion of IE, disparate 
outcomes. Often sample size was very limited, as it happened 
for the study showing more favorable results for the associa
tion of daptomycin and ceftaroline [204]. Despite their differ
ences, these RCTs shared a common objective: they were 
conceived to test combination as upfront therapy.

On the other hand, this approach might be reserved as sal
vage therapy in case of persistent BSI or clinical failure. 
Unfortunately, no RCT to date has addressed this question 
[215]. Observational studies have the further limitation of highly 
varying definitions of bacteremia persistence and treatment fail
ure [216]. Moreover, rescue therapy may simply imply switching 
from a monotherapy to another stand-alone regimen: a study 
from the Veterans Affairs cohort in the United States suggested 
a clinical benefit in early transitioning from vancomycin to dap
tomycin even in the absence of failure criteria [217]. However, 
salvage therapy often relies on different combination schemes, 
featuring vancomycin or daptomycin as backbone [217]. Given 
the absence of a standardized treatment protocol or universally 
preferred regimen for this scenario, each patient should be 
assessed on a case-by-case basis, ensuring effective source con
trol and verifying the clearance of FUBCs [218].

8.3. Duration of treatment and strategies for safe 
discharge

The current trend in the field of antibiotic therapy is to mini
mize the duration of treatment courses, with the aims of 
reducing selective pressure, a significant driver of resistance, 
mitigating the risk of adverse events, including those asso
ciated with prolonged hospital stays, and enhancing quality of 
life [219]. A very recent RCT showed non-inferiority of a 7-day 
course compared with a 14-day course for BSI by many patho
gens with 90-day mortality as main outcome: nonetheless, this 
study excluded patients with SAB, owing to the peculiar viru
lence factors of S. aureus, enabling it to adhere to host tissues 
and cause metastatic infection [220].

The research question at hand is: what is the optimal 
duration of therapy for MRSA-BSI? The necessity of categoriz
ing this entity into complicated and uncomplicated forms is 
not merely an academic exercise but rather serves as the 
foundation for developing a definitive treatment plan [66]. In 
summary, the established practice is based on a 14-day course 
for uncomplicated MRSA-BSI [49,179], whereas extended dura
tions (28–42 days) are recommended in cases of cSAB [49,179]; 
even more prolonged periods of therapy may be required for 
patients who exhibit delayed clearance of bacteremia [221].

Abbreviating treatment duration in cases of SAB may be asso
ciated with increased risk due to reduced efficacy rates [49]. 
However, on an individual basis, a course shorter than 14 days 

might be considered, although it is important to note that the 
supporting evidence in this instance is derived solely from obser
vational studies with undefined or low proportions of MRSA cases, 
thus limiting immediate generalization to MRSA-BSI [222].

However, upon determining a specific duration of treatment, 
the subsequent question arises: can patients be safely dis
charged to complete their courses at home? In this regard, 
a pivotal RCT was the POET study, which recruited patients 
with left-sided IE [223]. The study demonstrated that transition
ing to oral antibiotic treatment (after fulfilling strict criteria of 
clinical stability) was noninferior to continued intravenous anti
biotic treatment, considering a composite primary outcome of 
all-cause mortality, unplanned cardiac surgery, clinically evident 
embolic events, and relapse of bacteremia [223]. Following ran
domization, the median length of hospital stay (not 
a prespecified outcome) was 3 days in the orally treated group 
and 19 days in the intravenously treated group (p < 0.001) [223]. 
Of note, S. aureus accounted for 21.8% of cases, but all were 
MSSA, therefore, once again external validity for MRSA-BSI in its 
most important complicated form was hampered [223].

Oral step-down with cotrimoxazole (the association 
between trimethoprim and sulfamethoxazole) for MRSA-BSI 
has been proposed by the United Kingdom guidelines (weak 
recommendation), in case of known susceptibility, but there is 
no guidance about the type of patient potentially benefitting 
from this approach [180].

SABATO was a trial just published in 2024 specifically 
focused on oral step-down in SAB, precisely in what research
ers defined as low-risk infections, a synonym for uSAB [224]. 
According to the protocol, after 5–7 days of intravenous 
antimicrobial therapy patients were randomized to oral anti
microbial therapy or to continue intravenous standard ther
apy with a total duration of antimicrobial therapy of 14 days. 
For MRSA-BSI, the oral options were cotrimoxazole and line
zolid; the primary outcome was a composite of relapsing BSI, 
development of deep-seated infection, and mortality attribu
table to infection [224]. The trial met its non-inferiority criter
ion (with a predetermined margin of 10%), as the primary 
endpoint occurred in 13% of the intervention group com
pared to 12% in the control group, yielding a treatment 
difference of 0.7% (95% CI; −7.8–9.1) [224]. However, two 
significant limitations were identified: an exceptionally low 
enrollment rate, potentially due to stringent inclusion criteria 
that resulted in only 213 patients being randomized from 
a pool of 5,063 screened subjects; and the limited size of the 
MRSA subgroup (7.5%, 16/213), with no complications 
observed in the oral therapy group (and a single event in 
the control arm), thereby constraining the broader applic
ability of the findings [224].

In real-world studies, the main oral options, only in the 
setting of step-down therapy, for MRSA-BSI are cotrimoxa
zole, linezolid, clindamycin, and doxycycline [225]. Supporting 
data, even for BSI with IE, are predominantly observational in 
nature, especially concerning cotrimoxazole and linezolid 
[226]. In spite of their high bioavailability, safety, and toler
ability concerns are not negligible, and there are also issues 
about ideal dosages: for instance, the recommended daily 
dose of cotrimoxazole can range from 960 mg to 4,800 mg 
[226]. Of note, cotrimoxazole at high dose (3,840 mg/die in 
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total, administered first intravenously and then orally at phy
sicians’ discretion) was inferior to vancomycin as upfront 
therapy (pre-specified margin was 15%) for MRSA infections 
in an RCT studying 252 patients of which 91 (36%) had BSI 
with treatment failure as primary composite outcome includ
ing 7-day death: the worst prognosis of patients in the cotri
moxazole arm was confirmed in the subgroup of BSI even in 
a multivariable analysis [227]. Reappraisal of some RCTs to 
identify BSI cases in studies comparing linezolid and vanco
mycin enabled to perform a pooled analysis showing no 
differences in outcomes, although in a limited number of 
patients: 24 out of 36 (67%) patients treated with linezolid 
survived, in comparison to 24 out of 37 (65%) patients who 
received vancomycin treatment [228].

An intriguing option to replace oral switching is the 
implementation of long-acting antimicrobials like dalbavan
cin and oritavancin [229]. Although these drugs are cur
rently licensed only for treating acute bacterial skin and 
soft tissue infections, their pharmacological characteristics 
suggest they could be valuable in managing severe or 
deep-seated infections such as BSI and IE [230]. The utiliza
tion of these antimicrobials is particularly attractive in sce
narios where extended treatment, prompt hospital 
discharge, and avoiding or minimizing long-term intrave
nous catheter use are preferred [230]. If a patient fulfills 
the criteria of safe discharge (i.e. afebrile, microbiological 
clearance achieved, clinical stability), transitioning to oral 
medications is not always possible: the use of oral antibio
tics may pose unacceptable safety risks due to patient- 
specific factors or the pathogen’s resistance profile may be 
not permissive; additionally, concerns may arise regarding 
the medication’s absorption or the patient’s ability to 
adhere to oral administration, particularly for extended 
treatment periods [231]. In this respect, dalbavancin and 
oritavancin, with their long half-lives, might replace oral 
step-down therapy, even though so far no RCT data have 
been published to support this approach [230]. Moreover, 
their administration should be based on a well-organized 
service of outpatient parenteral antibiotic therapy to guar
antee appropriate follow-up [231]. Indeed, a proper dose of 
dalbavancin and oritavancin may ensure a high likelihood 
of optimal probability of target attainment for 2 weeks, but 
in case of longer periods of treatment, TDM-driven manage
ment is advisable [172]. These long-acting antimicrobials 
may be used for sequential/consolidation therapy in 
patients with BSI. A recent experience of dalbavancin from 
the United States involved 115 cases, of which 54 (47%) 
were MRSA, both in uSAB and cSAB; the median time-to- 
administration of the drug was 10 days, the most common 
regimen was a single 1,500 mg administration, and the 90- 
day clinical failure rate was just 12.2% [232]. Similarly, in 
a cohort of 72 patients, of which 12 (17%) had MRSA-BSI, 
oritavancin was administered after a median of 11 days of 
prior antibiotic regimens; the most common dosage was 
1,200 mg once, and the 90-day success rate was 86% 
[233]. Results of the dalbavancin as an option for treatment 
of SAB trial (DOTS, NCT04775953) are eagerly awaited to 
shed light on the role of the long-acting as consolidation 
strategy for MSSA- and MRSA-BSI.

9. Conclusion

The management of MRSA-BSI after decades of research still 
remains complex and characterized by numerous controversial 
aspects. A series of coordinated actions is required for 
a correct prognostication and a proper treatment plan; how
ever, both areas require improvement and refinement. 
Combination therapy seems not to offer tangible advantages 
as upfront approach for all patients. There are some interest
ing antimicrobial options to reduce the duration of hospitali
zation. Further and well-conducted RCTs are necessary to 
update the current therapeutic paradigm.

10. Expert opinion

Twenty years have elapsed from the publication of the RCT 
supporting daptomycin as valid alternative to vancomycin for 
SAB including MRSA-BSI [53] and the ERADICATE study that 
proved non-inferiority of ceftobiprole versus daptomycin for 
the same indication [194]. In the meanwhile, no other break
through trials have come to light, whereas the field of invasive 
infections by Gram-negative pathogens has witnessed the 
advent of numerous novel drugs to keep the pace up with 
emergent mechanisms of resistance, especially toward carba
penems [234].

Although the stable susceptibility to the standard of care, 
vancomycin, over the decades, MRSA-BSI continues to pose 
a notable burden, associated with a mortality rate approach
ing 30% [27], comparable to the one of BSI by Klebsiella 
pneumoniae carbapenemases-producing or by carbapenem- 
resistant Pseudomonas aeruginosa [235], which represent 
menace of this century, whereas MRSA looms for a very longer 
time.

Considering that no revolutionary drugs able to dramati
cally modify the prognosis are on the horizon, the current 
efforts should be directed to find a more nuanced approach 
to MRSA-BSI, aiming at tailoring treatment strategies espe
cially in the dawning era of personalized medicine.

A first step should be the establishment of a universally 
accepted definition of complicated (and conversely, uncom
plicated) infection. Some authors have advocated a neat dis
tinction among clinical endpoints of SAB: i) early death, 
associated with multi-morbidity and advanced age; ii) meta
static infection, primarily affecting the musculoskeletal sys
tem; ii) endocarditis, associated with delayed death in older 
individuals with multi-morbidity, and iv) bacteremia without 
complications [236]. Against this backdrop, an upstream 
assessment should imply that uSAB is represented by an 
episode without metastatic foci on presentation in a subject 
lacking host-related risk factors such as advanced age and 
comorbidities [236]. The treatment approach could be tai
lored accordingly, since an intensification of antimicrobial 
treatment (for instance, by a combination regimen, along 
with aggressive source control) might be more beneficial in 
cases with high bacterial load and/or impaired microbiologi
cal clearance, typically when the infection is already dissemi
nated, than in cases in which patients’ factors are 
predominant in influencing the prognosis [236]. The chal
lenge ahead is also represented by the development of 
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a prognostic model not relying on the ‘time factor,’ as it 
occurs if data from FUBCs are needed, in order to speed up 
key decisions already on presentation.

To this regard, another avenue of research is the assessment 
of host biomarkers, which may be used either to better stratify 
the risk of a complicated/severe course upstream or to guide 
antimicrobial duration along the patient’s path. A potential sig
nature of heightened mortality risk may be identified in the 
inflammatory pathway, and probably interleukin (IL)-10 is the 
most promising marker [237]. IL-10 is a cytokine with relevant 
anti-inflammatory properties that regulates the immune 
response to pathogens; it prevents the activation of Th1 helper 
T cells and suppresses pro-inflammatory macrophage and cyto
kine production [215]. The link between increased risk of persis
tent BSI or death and the high serum levels of IL-10 may lie in 
higher intravascular peptidoglycan concentrations, reflecting an 
elevated S. aureus intravascular inoculum, leading to the stimula
tion of IL-10 production [238]. As matter of fact, some host 
genetic variations seem protective toward persistent SAB, both 
by MRSA or by MSSA, and the mechanistic basis should be the 
reduced production of IL-10 [239]. Other biomarkers appear to 
be associated with microbiological clearance, such as IL-1beta, in 
patients with MRSA-BSI: a robust IL-1beta response is elicited by 
beta-lactams (regardless of susceptibility of the pathogen) either 
alone or in combination with vancomycin or daptomycin [240]. 
In the small RCT by Geriak and colleagues that contrasted the 
association of daptomycin and ceftaroline with vancomycin 
monotherapy, the majority of patients with unfavorable out
come in the comparator arm (5/6) showed high baseline levels 
of IL-10 (above the threshold of 5 pg/ml), whereas no patient 
died in the intervention group, even among the ones with 
elevated levels of IL-10 [204]. According to some authors, all 
these data represent the rationale for a strategy entailing an 
upfront combination therapy based on vancomycin or daptomy
cin plus a beta-lactam in all patients with upstream high IL-10 
concentrations [196]. The reduction of its levels may also guide 
therapy duration [196]. Of course, it would be interesting to 
understand if monotherapy with anti-MRSA beta-lactam such 
as ceftobiprole, approved in the United States for BSI after the 
ERADICATE results [194], would be more effective of 
a monotherapy relying on vancomycin or daptomycin in the 
subgroup of MRSA-BSI patients showing increased IL-10 levels 
at baseline.

Another way to refine duration of therapy may be related 
to the use of novel metagenomic next-generation sequencing 
(mNGS) techniques [241]. Indeed, in a cohort study of 66 
patients with SAB (54.5% MRSA), microbial cell-free DNA 
(mcfDNA) sequencing detected S. aureus genetic material 
with higher sensitivity of 86% compared with conventional 
blood cultures and for a longer period of time, with each 
additional day of positivity almost tripling the likelihood of 
metastatic infection (OR 2.89; 95% CI, 1.53–5.46) [242]. Some 
authors have proposed to evaluate the feasibility of a trial 
investigating discontinuation of antibiotics for SAB in case of 
undetectable mNGS for S. aureus in two consecutive samples 
at 48- or 72-h intervals [241].

Regarding the therapeutic approach, as outlined above, com
bination therapy has not clearly demonstrated superiority over 
monotherapy so far, although findings from prevalently 

observational studies showed promise, especially when associat
ing daptomycin with a beta-lactam (ceftaroline) in populations 
with high proportion of endocarditis (around one-third) [243]. To 
reconcile differences between RCTs and non-randomized stu
dies, when addressing the question of combination therapy, 
probably a crucial factor is the correct definition of the target 
population, since the large majority of RCTs had very low number 
of patients with endocarditis (Table 3), the paramount complica
tion of MRSA-BSI. Ideally, RCTs should be based on more homo
geneous patients, since the marginal benefit of a combination 
therapy in subjects with low-risk or uncomplicated MRSA-BSI is 
likely very low. About the ideal regimen, the rationale backing 
the association between daptomycin and a beta-lactam such as 
ceftaroline has been extensively discussed. At any rate, the same 
reasoning regarding the benefit of the addition a beta-lactam 
applies to vancomycin, but disappointing results came from the 
CAMERA-2 trial, early terminated for safety concerns [205]. The 
RCT compared standard monotherapy (although daptomycin 
was allowed, 99% of patients in the control arm received vanco
mycin) with a combination regimen based on vancomycin plus 
flucloxacillin, cloxacillin, or cefazolin: any potential positive clin
ical impact was negated and outweighed by high rate of nephro
toxicity in the intervention arm [244]. Even not delving into the 
issue of the proper assessment of trial participants’ true baseline 
kidney function [245], actually the risk of heightened nephrotoxi
city significantly changed between patients adding to vancomy
cin an antistaphylococcal penicillin and the ones adding 
cefazolin [196], a difference rooted in the diverse kidney toxicity 
potential of the various beta-lactams [246]. Therefore, despite 
the results of CAMERA-2 [205], the research on combination 
regimens based on vancomycin should not be abandoned [196].

Pending novel studies for a more personalized approach 
with standard antibiotics as outlined above, another strategy 
would consist in resorting to adjuvants different from tradi
tional antimicrobials, ideally to achieve more rapid killing, 
biofilm disruption, and toxin inhibition. A promising agent 
was exebacase, a first-in-class lysin produced from 
a bacteriophage-derived gene, a recombinant protein 
designed to be bactericidal, anti-biofilm, and synergistic with 
antibiotics: encouraging results stemmed from a proof-of- 
concept study testing the association of standard therapy 
plus exebacase versus standard therapy alone, especially for 
MRSA-BSI [247]. Unfortunately, in the subsequent phase 3 RCT, 
named DISRUPT, randomizing in a 2:1 ratio 250 patients with 
SAB (99/250, 36.5%, MRSA), clinical response rates at day 14 (a 
composite outcome including survival) were 59.4% in the 
exebacase arm versus 71.8% in the antibiotics alone group, 
and the same pattern was observed in the MSSA and in the 
MRSA subgroups [248]. Another weapon in the armamentar
ium of adjuvants might be phage therapy, although it would 
not be feasible as first-line approach but a potential resource 
for persistent infections [249].

Hopefully, some answers to the most urgent questions 
regarding SAB management will come from the Staphylococcus 
aureus Network Adaptive Platform (SNAP) trial, conceived to 
address multiple issues as efficiently and as rapidly as possible, 
both for MSSA and MRSA: about MRSA-BSI, one of the research 
questions is the benefit of adjunctive cefazolin for 7 days to 
daptomycin or vancomycin [250].
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Eventually, in the light of the complexity of SAB manage
ment, especially concerning MRSA-BSI, prevention is an aspect 
that cannot be overlooked: there are vaccines and monoclonal 
antibodies under investigation to prevent hospital-acquired 
infections including the ones brought about by S. aureus 
[251], although no new drugs are anticipated to enter clinical 
practice in the very near future.

Instead, in the upcoming months, the publication of the 
joint guidelines between IDSA and the European Society of 
Clinical Microbiology and Infectious Diseases (ESCMID) on SAB 
management should occur. Some recommendations were pre
sented as preview at the 2024 ESCMID global and the final 
version of the document is eagerly awaited to provide a high- 
profile guidance in this setting.
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